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Abstract:
Graphene nanoribbons (GNRs) with structural defects have attracted significant interest due to their
tunable electronic and magnetic properties. In this study, we investigate the role of transition metal
(Co and Fe) doping on the transport properties of zigzag GNRs containing single vacancy defects,
terminated either by unsaturated carbon atoms or pyridinic nitrogen atoms. Using density functional
theory (DFT) combined with non-equilibrium Green’s function formalism, we analyze the electronic
transport characteristics and spin-dependent effects. Our findings reveal that metal atom doping has
a contrasting impact depending on the defect type: in carbon-terminated vacancies, metal atoms
reduce conductivity due to enhanced localization of electronic states, while in pyridinic defects,
they enhance conductivity by extending transmission states. Additionally, metal doping significantly
improves spin filtering efficiency, making doped GNRs promising for spintronic applications. These
results emphasize the importance of defect engineering in graphene-based nanodevices and provide
insights into optimizing electronic transport properties through selective doping strategies.

Keyword: graphene nanoribbons, transition metal doping, vacancy defects, spin transport, electronic
conductivity, density functional theory.

Introduction
Graphene is undoubtedly the most promising 2D material for practical applications, primarily

due to its mechanical and thermal stability, as well as its exceptionally high carrier mobility and flux
[]1, 5. The ballistic nature of electronic transport makes graphene one of the best-suited materials
for high-frequency applications [6,10]. Chemically processed synthesized graphene typically isn’t
perfect; it often contains various structural imperfections like grain boundaries, vacancies, dislo-
cations, impurity atoms, and defects associated with changes in carbon hybridization [11,14]. It is
known that these defects significantly alter the structural, electronic, optical, and other observable
characteristics of graphene [15,17]. This sensitivity arises from the fact that even minor alterations
in the honeycomb arrangement of carbon atoms can have a profound impact on these properties.
They also influence the absorption of both metallic and non-metallic atoms/molecules onto graphene.
For instance, metals and metal oxides tend to deposit primarily at defective sites on graphene [18,19].
Defects impede the clustering of transition metals [20] but promote the adsorption of certain reagents,
such as thiol and hydroxyl radicals, by generating new active sites [21,22]. In turn, these metal
inclusions profoundly influence the physical and chemical properties of graphene and by altering the
electronic environment, they enhance the material’s catalytic, electronic, and mechanical properties,
thereby broadening its range of applicability in various technologies [23,29]. This modification
not only tailors graphene for specific applications but also potentially unlocks new functionalities,
making it even more versatile and valuable in fields ranging from electronics to energy storage and
conversion.

On the other hand, certain impurities can be used to enhance the functionality of graphene. For
example, Nitrogen (N) plays an important role as a dopant impurity in tuning the conductivity by
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introducing additional electrons, which are released from pentavalent nitrogen atoms substituting
tetravalent carbon atoms [30,33]. Graphene can exhibit three distinct types of nitrogen doping:
pyridinic, pyrrolic, and graphitic [30]. Graphitic nitrogen directly substitutes carbon atoms within
the graphitic lattice, potentially leading to the formation of an n-type conductor [34]. Pyridinic
nitrogen forms bonds with two carbon atoms within a hexagonal structure, whereas pyrrolic nitrogen
bonds with two carbon atoms arranged in a pentagonal configuration. These nitrogen types are
frequently found at the edges of the layer but may also occur within the layer, often in conjunction
with vacancies. Incorporating metal atoms into nitrogen-substituted defects further citeines the
functionality of graphene and broadens its potential applications [35,37]. These defects can further
tailor themagnetic properties of graphene [38,40], with potential implications in spintronics, magnetic
storage, and nanoscale sensing.

In this study, we study the spin-dependent electronic transport properties of zigzag graphene
nanoribbon (GNR) with vacancy defects, terminated either with unsaturated carbon or pyridinic
nitrogen atoms (see Fig. 1), using the density functional theory (DFT) in combination with non-
equilibrium Green’s function formalism. Our findings reveal a decrease in conductivity after nitrogen
substitution. Additionally, we investigate the effect of metal atoms embedded within the vacancy
defects on the electronic transport properties of the GNR. The effect of metal atoms strongly depends
on the nature of the vacancy defect: while metal atoms decrease conductivity in carbon-terminated
defects, they result in enhanced conductivity in pyridinic defects. The obtained current reduction in
the former case stems from the the localization of electronic states, as elucidated through analysis of
the energy-dependent transmission eigenstates.

Materials and Methods
Our model systems consist of hydrogen terminated zigzag GNR with a single vacancy defect,

which is terminated either with unsaturated carbon bonds (GNR-C sample; see Fig. 1 (a)) or by
nitrogen atoms (i.e., pyridinic N3-vacancy; GNR-N sample; see Fig. 1 (c)). Transition metal (M)

atoms are incorporated within these vacancy defects through covalent M-C and M-N bonds, as
shown in Figures 1 (b, d). The size of the electrodes in these device geometries is 4.95 A and the
size of the central region is 6 times larger than the electrode size. As a reference, we also investigate
the transport properties of pristine GNR with electrodes of the same length.

The device structures are geometry optimized using Density Functional Theory (DFT) within
the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation for exchange-correlation
energy [41], following the optimization procedure described in Ref. [42]. The Grimme’s PBE
empirical correction [43] is employed to consider non-bonded van der Waals interactions, while
Brillouin zone integration is conducted using a 1×1×500×Monkhorst-Pack mesh [44] for k-points
sampling. All atoms are characterized using norm-conserving PseudoDojo seudopotentials with a
medium basis set [45]. In the simulations, the convergence criterion for Hellmann-Feynman forces
was set at 0.01 eV/Å, and the density mesh cut-off energy was established at 2176.91 eV.

The current-voltage (I-V ) characteristics of the considered systems are computed utilizing the
nonequilibrium Green’s function formalism [46] within the Landauer-Büttiker approach:

I(V) =
2e
h

∫ µR

µL

T(E, V)[ f (E − µL)− f (E − µR)]dE, (1)

where T(E, V) represents the transmission spectrum at a specific applied voltage (V), f(E, EF) denotes
the Fermi-Dirac distribution function, and µL/µR stand for the chemical potential of the left/right
electrode, respectively. The transmission coefficients are obtained from

T(E, V) = TLR(E, V)GC(E, V)TLL(E, V)G±
C (E, V), (2)

where GC(E, V) and G+(E, V) denoted the retarded Green’s function for the active region and
ΓL/R(E, V) are the coupling coefficients for the left/right electrodes, respectively. The computational
package Atomistix Toolkit [47,48] is employed for conducting the calculations.
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Figure 1. Device geometries consisting of 10 carbon atoms wide zig-zag graphene nanoribbon with
C-terminated (a) and N- terminated (c) vacancy defects without (a,c) and with (b,d) transition metal (Co and Ni)

atoms.

Figure 2. (a,b) Current-voltage characteristics of zigzag GNR with C-terminated (a) and N-terminated (b)
vacancy defect without and with transition metal atoms (Co and Fe). Dashed curves show the results for the
pristine GNR. (c-e) Zero volt- age transmission pathways for pristine GNR (c), GNR with a vacancy defect (d)

and GNR with pyridinic N3-vacancy (e). Defect areas are highlighted.

Results
We begin by analyzing the I-V characteristics of the system with C-terminated vacancy defect

(see Fig. 1 (a)). The dashed curve shows the I-V curve of the pristine GNR, where the current
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increases linearly with applied voltage. The presence of the vacancy defect decreases the current
through the system by more than a factor of 2 (black circles in Fig. 2 (a)), due to the backscattering of
electrons from the vacancy defect. This is shows in Fig. 1(d), which shows the transmission pathways
at zero bias voltage. The attachment of the metal atoms at the vacancy defect decreases the current
through the sample for any given value of the applied voltage, with the smallest current for the Iron
(Fe) atom (blue triangles). More than 50 % decrease in the current is obtained depending on the
applied voltage. To identify the origin for the reduced current after metal atom embedment, we con-
ducted analysis of device density of states (DDOS), transmission spectra (T (E)), and transmission
eigenstates for the considered systems. Figure 3 shows the DDOS (a) and T (E) (b) as a function of
electron energy for GNR-C (solid-black curves) and GNR-C-Fe samples (dashed-red curves) at bias
voltage 0.6 V for which we obtained the largest reduction of the current due to metal atom attach-
ment. Despite smaller DDOS, the electron transmission at the Fermi level is larger for the GNR-C
sample with extended transmission eigenstates (see panel 1 in Fig. 3). The metal atom incorporation
results in strong localiza- tion of the electronic states (see panel 2) which reduces the transmission
probability of the electrons through the junction. Similar effect of the metal atom is also obtained for
the other electron energies (see panels 3 and 4). Thus, the reduced current in the samples with metal
atom in- clusions are related to nanoscale charge localization on the system.

Figure 3. Device density of states (a) and transmission spectra (b) as a function of electron energy (zero
corresponds to the Fermi level) for GNR-C (solid-black curves) and GNR-C-Fe (dashed-red curves) samples at
bias voltage 0.6 V. Panels 1-4 show the isosurface plots (isovalue 0.1 Å−1.5eV−0.5) of transmission eigenstates

of sample GNR-C (panels 1 and 3) and GNR-C-Fe (panels 2 and 4) at electron energies indicated on the
transmission curves.

Figure 4. Variations of averaged electrostatic difference poten- tial for pristine GNR (solid-black curve),
GNR-C (dashed-red curve) and GNR-C-Fe (dotted-blue curve) samples at zero bias voltage.
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Another important factor that affects the electronic transport properties of low-dimensional
materials [49] is the variations of the electrostatic potential. Therefore, we plot in Fig.4 the variations
of the electrostatic difference potential (∆V) in pristine GNR (solid-black curve), GNR-C (dashed-red
curve) and GNR-C-Fe (dotted-blue curve) samples. This quantity is determined by subtracting the
electrostatic potential of the self-consistent valence charge density (i.e., solution of the Poisson
equation) from the potential obtained through the superposition of atomic valence densities. ∆V
of pristine GNR is characterized by periodic oscillation with amplitude 0.04 V. The vacancy defect
creates a significant potential barrier for electrons in the middle of the sample, which can account for
the reduced current observed in this system. The presence of the metal atom further increases this
barrier which further decreases the current. This observation may provide an explanation for the
reduced current observed after the incorporation of metal atoms.

Next, we consider the case when the carbon atoms at the defect edge are substituted by nitrogen
atoms (see Fig. 1 (b)). The presence of the pyridinic defect also reduces the current of the pristine
GNR (solid-black curve in Fig. 2 (b)). It is interesting to note that the incorporation of a metal atom
enhances the current in the system for this type of defect. To find the origin of the enhanced current
after metal atom embedment, we plot in Fig. 5 DDOS (a) and T (E) (b) as a function of elec- tron
energy at bias voltage 0.6 V for GNR-N (solid-black curves) and GNR-N-Fe samples (dashed-red
curves). The DDOS of the former system exhibits an almost constant value across the considered
range of electron energy, with the exception at larger electron energies. Despite smaller DDOS, the
system with metal atoms show larger trans- mission for most of the electron energies. In addition,
the electronic states becomes extended over the junc- tion, which, consequently, enhances the current
across the sample.

Figure 5. Device density of states (a) and transmission spectra (b) as a function of electron energy (zero
corresponds to the Fermi level) for GNR-N (solid-black curves) and GNR-N-Fe (dashed-red curves) samples at

bias voltage 0.6 V. Panels 1 and 2 show the isosurface plots (isovalue 0.1 Å−1.5eV−0.5) of transmission
eigenstates of sample GNR-N (panels 1) and GNR-N-Fe (panels 2) at the Fermi level.

It is known that reconstructed vacancy defects containing carbon atoms with unsaturated bonds,
behave like quasilocalized magnetic impurities [50]. In what follows we study how the metal atom
embedment affect the spin-filtration potential of the graphene. For that purpose, we plot in Fig. 6 the
ratios of currents (i.e., asymmetry) for spin-up and spin-down electrons for both C-terminated (a)
and N-terminated (b) vacancy defects. As expected, the pristine GNR shows no asymmetry in the
current. The presence of the vacancy defects results in a larger current for spin-up electrons, but
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the value of the asymmetry does not exceed 3 % (black circles in Fig. 6 (a)). The presence of the
ferromagnetic atoms increases the spin filtration property of the system with maximum asymmetry
(61 %) for the Co atom (red squares in Fig. 6 (a)). The Fe atom also shows the enhanced spin fil-
tration (blue triangles in Fig. 6 (a)). The effect of the metal atoms on the spin-dependent electronic
transport becomes more pronounced for the system with pyridinic vacancy defect (Fig. 6 (b)): the
asymmetry increase by a factor of 2 for both Co and Fe atoms (red squares and blue triangles). The
pristine GNR-N sample also shows enhanced spin filtration (13 %; black circles). Thus, pyri- dinic
vacancy defects are more effective in enhancing the spin selectivity of graphene.

Figure 6. Asymmetry (i.e., ratio of currents for spin up and spin down electrons) as a function of bias voltage
for the system with C-terminated (a) and N-terminated (b) vacancy defects without and with metal atoms.

Conclusions
Using density functional theory in combination with the nonequilibrium Greens functional

formalism, we study the effects of different vacancy defects and metal dopants on the spin-dependent
transport properties of zigzag graphene nanoribbons. We found that pyridinic nitrogen atoms reduce
the conductivity of GNR as compared to C-terminated vacancy defects. The influence of metal atoms
varies depending on the defect type, increasing conductivity in pyridinic defects but reducing it
in C-terminated defects. Additionally, the pyridinic system exhibits enhanced spin dependency in
charge transport, suggesting potential advantages for spintronic nanodevices. These findings show
the importance of defect engineering and dopant selection in graphene device design and highlight
avenues for future research in understanding and utilizing graphen-based devices.
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