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Abstract:
The electronic, structural and transport properties of the semiconductor silver phosphate Ag3PO4
have been investigated using first-principles methods. The influence of deformation on the band gap
width, effectivemasses of charge carriers, their lifetimes andmobilities, elastic modulus constants, and
deformation potentials has been studied. It has been shown that silver phosphate with a cubic crystal
lattice is a semiconductor with both direct and indirect transitions (energy gaps of 2.54 eV and 2.47 eV
respectively), that is consistent with experimental data. It has been established that the effective
masses of electrons are approximately three times smaller than those of holes, and the electron lifetime
(21.8 fs) significantly exceeds the hole one (2.9 fs), indicating the electronic conductivity of Ag3PO4.
With increasing deformation, the effective mass of electrons rises, while the effective mass of holes
remains practically unchanged under compressive deformation, decreases under tensile deformation,
and then returns to the initial value with further increase in tension. Electron mobility is maximum
in the absence of deformation (66.14 cm2/(V · s)) and significantly decreases when deformation is
applied. The obtained results can be used in the design of photocatalytic and strain-sensing materials
containing silver phosphate.
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Introduction
Intensive industrial development and urbanization are exacerbating environmental sustainability

issues, necessitating the search for alternative energy sources. Key challenges include the removal
of organic pollutants from water systems and the efficient conversion of solar energy into chem-
ical energy. In this context, particular attention in recent years has been paid to semiconductor
photocatalytic materials capable of simultaneously degrading toxic organic compounds and photo-
catalytically generating hydrogen without producing carbon-containing emissions [1–3]. Traditional
photocatalysts, such as TiO2 [4,5] and ZnO [6–8], are active primarily under the influence of ul-
traviolet radiation, which constitutes only a small fraction of the solar spectrum [9], raising the
demand for new catalysts sensitive to the visible spectrum. Such compounds include BiVO4 [10,11],
WO3 [13–15], BiOI [16,17], CdS [18–20], ZnIn2S4 [21,22], g-C3N4 [23,24] and silver halides
AgX (X = Cl, Br, I) [25,29]. Among them, silver-containing compounds, namely Ag3PO4 [30,31],
Ag2CO3 [32,33], Ag3VO4 [34–36], AgSbO3 [37,38], and Ag6Si2O7 [39], are quite promising
materials for photocatalysis due to their narrow band gap and high photoactivity under visible light,
but are susceptible to degradation under prolonged illumination and photocorrosion.

The use of conductive matrices and carriers (graphene, carbon nanotubes, highly conductive
oxides) accelerates charge transport and prevents electron accumulation at Ag+ centers. Controlled
formation of nanostructures (nanoparticles, nanowires, nanofilms) increases the active surface area
and enables the rational management of defects affecting photostability. Thus, fundamental studies
of the electronic structure, transport properties, and the influence of external factors for Ag3PO4
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are of particular importance essential for reducing its instability and mitigating photocorrosion
processes during use. A thorough understanding of these characteristics and the mechanisms of
chemical processes in the presence of Ag3PO4 is key to the creation of modified composite systems
characterized by increased stability and capable of combining high photoactivity with a long service
life.

In this study, using first-principles methods (DFT, GGA/PBE with Hubbard corrections), a
comprehensive study of the electronic structure, mechanical stability, and transport properties of the
cubic Ag3PO4 structure is conducted. For the first time, the effect of deformation on the band gap
and effective masses of charge carriers is analyzed in detail. Prospects for further modification of the
material aimed at optimizing its photoactivity and operational stability are discussed.
Materials and Methods

Ab initio calculations were performed using the Quantum Espresso package [41] using opti-
mized norm-conserving Vanderbilt pseudopotentials (ONCVPSP) [42] and the PBE (Perdew–Burke–
Ernzerhof) exchange-correlation functional [43] within the DFT GGA+U method [44]. The kinetic
energy and charge density cutoffs were chosen to be 680 eV and 5440 eV, respectively, while the
Brillouin zone was chosen using a 6 × 6 × 6 grid according to the Monkhorst–Pack scheme. The
electron-valence configurations are given by Ag – [Kr] 4d105s1, O – [He] 2s22p4, P – [Ne] 3s23p3.
The Hubbard corrections U were chosen as follows: Ag(4d) = 7.2 eV, O(2p) = 5.0 eV, P(3p) = 5.0 eV.
The space group of the crystal is P43n. The body-centered cubic unit cell of Ag3PO4 (a = 6.014 Å),
including 16 atoms, was taken from the Materials Project database [? ].

According to the deformation potential theory proposed by Bardeen and Shockley [46], the
mobility of charge carriers in a bulk material is determined by the formula:

µ3D
e =

23/2π1/2

3
c3D4

h̄e
E2

l m∗ 5/2(kBT)3/2
(1)

where C3D is the elastic modulus constant, El is the strain potential constant, T is the tempera-
ture, and m∗ is the electron effective mass.

The strain potential constant El is proportional to the shift of the valence band for a hole or the
conduction band for an electron caused by the applied voltage and is defined as:

El =
d(E − E0)

d(ln V)
(2)

where E is the LUMO/HOMO energy as a function of stress, and V is the lattice volume.
The elastic modulus constant C3D expresses the change in total energy E under deformation δ,

divided by the equilibrium volume V0, and is expressed by the formula:

C3D =
∂2E
∂δ2

/
V0 (3)

The effective masses of an electron or hole are calculated according to the formula:

m∗ =
h̄2

∂2E
∂k2

(4)

where E is the charge carrier energy, and k is the wave vector. To characterize the efficiency of
electron–hole separation, the following ratio is calculated:

D =
m∗

h
m∗

e
(5)

where is the effective mass of a hole, and is the effective mass of an electron. The higher the
value of D, the better the charge separation.
Results

In our work, we considered Ag3PO4 in the space group P43n with two formula units within a
cell size of 6.0141 Å (Figure 1).
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Figure 1. Spatial structure of Ag3PO4 P43n.

ONCVPSP pseudopotentials with Hubbard corrections were used to optimize the lattice geom-
etry and cell dimensions. The optimization results and comparison with experimental data from the
literature are presented in Table 1.

The body-centered cubic lattice of Ag3PO4 consists of PO4 and AgO4 tetrahedra. Each Ag
and P atom is coordinated by four O atoms, while each O atom is coordinated by three Ag atoms and
one P atom. Due to the higher electronegativity of P compared to Ag, a strong distortion of the AgO4
tetrahedra occurs, which is reflected in the calculation results: after optimization with ONCVPSP
pseudopotentials, a noticeable decrease in bond lengths and the lattice parameter is observed.

Table 1. Comparison of experimental and calculated structural parameters of the Ag3PO4 cell

Ag-O bond length P-O bond length Ag-Ag bond length O-O bond length Lattice parameter Source
2.36 1.56 3.00 - 6.00 Exp. [47]
2.38 1.55 - 3.47 6.03 Exp.[48]
2.37 1.55 3.01 3.47 6.01 This work (before optimization)
2.20 1.53 2.82 3.19 5.64 This work (after optimization)

For the optimized configuration of Ag3PO4, the band structure was calculated and the projected
density of states (PDOS) was analyzed, as shown in Figure 2. The obtained results are consistent
with published studies, in which Ag3PO4 has direct and indirect transitions. The direct transition
is observed at the Γ point with Egap = 2.54 eV, and the indirect transition is between the M and
Γ points with Egap = 2.47 eV. According to experimental data, these parameters are 2.36 eV and
2.43 eV, respectively [40]. The observed dispersion of the conduction band indicates a lower effective
electron mass compared to the effective hole mass, and, accordingly, higher electron mobility as a
charge carrier.

Based on the PDOS plot, which demonstrates the energy distribution of electron levels, the
valence band is formed mainly by localized Ag 4d states with clear peaks, as well as delocalized O
2p states.
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Figure 2.
Fig. 2. Band structure of Ag3PO4 and PDOS analysis.

The conduction band consists predominantly of diffuse and weakly defined Ag 5s states, located
in the range of 2.5–7.5 eV. The Ag 5p states are highly delocalized throughout the energy range
studied. The P 3s states of phosphorus in the conduction band are more localized than the 3p states.

To calculate the deformation potential constant El , the crystal lattice was subjected to isotropic
expansion and compression of 5%. To determine the deformation potential constants, a linear
approximation of the dependence of the LUMO and HOMO level energies on the relative change in
the crystal cell volume was performed (Figure 3). The negative deformation potential constants for
LUMO and HOMO, −23.97 eV and −21.67 eV, respectively, indicate a decrease in the energy level
of the valence band and conduction band edges with increasing volume (stretching). Thus, the band
structure exhibits moderate and nearly symmetric sensitivity to deformation.

Figure 3.
Fig. 3. Energy of LUMO and HOMO levels as a function of the logarithm of the volume during deformation.
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The elasticity constant or C3D was determined using the thermo_pw.x module of the Quantum
Espresso package by approximating the dependence of the total energy of the system on a third-degree
polynomial – the Birch–Murnagen equation of state (EOS) of the third order (BM3) [49]:

E(V) = E0 +
9V0B0

16


[(

V0

V

)2/3
− 1

]3

B′
0 +

[(
V0

V

)2/3
− 1

]2[
6 − 4

(
V0

V

)2/3
] (6)

where E(V) is the energy of the system at volume V, E0 is the equilibrium energy at volume V0,
B0 is the bulk modulus or elasticity constant, B′

0 is the derivative of the bulk modulus with respect to
pressure, and V is the current volume.

The elastic modulus constant for our system was found to be 158.02 GPa for a cell volume of
179.57 Å, while Yang Lu et al. [50] obtained a value of 101.29 GPa for a cubic cell with a volume of
217.47 Å.

This difference in elasticity constant values may be due to stronger interatomic interactions in
the smaller cell volume combined with the greater rigidity of the structure itself. In a small-volume
cell, repulsive forces increase and deformation resistance increases, which in turn leads to an increase
in the elastic modulus constant.

Table 2 shows the transport characteristics of Ag3PO4. The electron and hole effective masses
are 0.58 m0 and 2.51 m0, respectively, and are comparable with previously published results [51,52].
The hole effective masses are approximately three times greater than the electron effective mass,
indicating that electron conductivity in Ag3PO4 is preferential to hole conductivity, despite Ag3PO4
being a traditional p-type semiconductor. This can be explained by the fact that our calculations
assume an ideal crystal structure, in which electrons are more easily excited and more mobile.
However, a real crystal contains Ag+ vacancies and holes, which are responsible for hole conductivity.

Table 2. Calculated effective masses (m∗) of electrons and holes and the ratio of their effective masses, D

Deformation, % Egap, eV m*e m*h D
-5 2.82 0.92 2.40 2.62
-3 2.68 1.01 2.43 2.41
-1 2.53 0.97 2.46 2.54
0 2.46 0.58 2.51 4.34
1 2.44 0.86 1.88 2.18
3 2.27 0.88 2.49 2.81
5 2.18 0.82 2.60 3.18

Table 2 and Figure 4 present the results of studying the effect of deformation on the band
structure of Ag3PO4. Under cell compression, the band gap increases from 2.46 eV to 2.82 eV,
which reduces the probability of excitation of electrons in the conduction band and contributes to a
decrease in sensitivity to the visible spectrum. Conversely, under maximum cell stretching, the band
gap reaches a minimum value of 2.18 eV, which shifts the absorption edge to longer wavelengths
and leads to an increase in the ability to absorb visible light. However, under large deformations, a
decrease in band dispersion is also observed, which negatively affects the transport properties of the
material.

The effective mass of an electron in the absence of deformation is m∗
e ≈ 0.58 m0, indicating

its high mobility. Under both compression and stretching, the mass increases to ∼ 0.82–1.0 m0, as
a result of which electron mobility naturally decreases. For holes, the mass remains significantly
greater than that of electrons and remains virtually constant (≈ 2.4–2.6 m0), resulting in weak hole
conductivity regardless of the degree of deformation. The coefficient D, as expected, has its highest
value of 4.34 in the absence of stress.



ISSN: 3093-8686; Uzbek Journal of Modern Physics 2025; 2 (2). 43 of 49

Table 3. Calculated constants of the deformation potential El and elasticity C3D, charge carrier mobility µ, and
their lifetime τ

Deformation, % ∆Ei(e), eV ∆Ei(h), eV C3D, GPa µe,
cm2/(V · s)

µh,
cm2/(V · s)

τe, fs τh, fs

-5 -23.94 -21.67 158.02 20.95 2.32 10.92 3.15
-3 16.51 2.24 9.46 3.09
-1 18.40 2.17 10.10 3.04
0 66.14 2.06 21.76 2.94
1 24.39 4.22 11.96 4.52
3 22.95 2.11 11.53 2.98
5 27.96 1.89 12.98 2.79

Table 3 presents the mechanical and transport characteristics of Ag3PO4. The electron mobility
is µe = 66.14 cm2/(V s) at zero strain, which is the maximum value, and at ±5% the mobility
decreases by 3–6 times (to 20–28 cm2/(V s)). The hole mobility is low (2–4 cm2/(V s)) and
responds weakly to strain. The calculated values for µ for our experimental configuration are greatly
overestimated relative to the data published by Sinha et al. ([53], 0.041 cm2/(V s) for electrons
and 0.009 cm2/(V s) for holes), but the trends remain the same – electrons are the majority charge
carriers. In the absence of deformation, the electron lifetime is τe ≈ 21.8 fs, which significantly
exceeds the value obtained for holes (τh ≈ 2.9 fs). Under compression, τe drops to ∼ 10 fs, while
τh increases slightly. The longer electron lifetime is consistent with previous conclusions about
their major contribution to the photocurrent; however, the high mobility of majority carriers also
accelerates the recombination of electron–hole pairs, which shortens the effective charge separation
time.

Thus, deformation alters the balance: compression increases the Eg value, reduces mobility, but
can improve resistance to photocorrosion; stretching, in turn, reduces Eg and improves absorption,
but reduces transport properties.

Figure 4. Change in the zone structure when applying deformation under compression (a) -1%, b) -3%, c) -5%)
and tension (d) 1%, e) 3%, f) 5%).

The binding energy Ebind was determined using the formula [54]:

Ebind(N) = E(N)− E(N − 1)− Eat (7)

where E(N) and E(N − 1) is the total energy of the system of atoms and the energy of the
system of atoms (N − 1), Eat is the energy of a free atom.

As can be seen from Table 4, the phosphorus atom has the highest binding energy, forming
strong covalent bonds with oxygen atoms. The silver atom is most weakly bound to the crystal
lattice, which may explain its increased mobility, leading to the formation of Ag vacancies. Thus, the
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Ag3PO4 structure is stabilized primarily by PO4 tetrahedra, while Ag atoms are thermodynamically
less stable.

Table 4. Binding energies in the Ag3PO4 system

System type E, eV Ebind, eV
Ag3PO4 -29229.53
Ag -4211.82 -2.67
P -179.54 -22.18
O -443.28 -5.04
Ag2PO4 -25015.04
Ag3O4 -29027.81
Ag3PO3 -28781.21

We determined the absolute values of the position of the edges of the zones (ECB and EVB)
based on the use of electronegativity according to Mulliken [55]:

ECB = χ − Ec −
1
2

Eg (8)

EVB = ECB + Eg (9)

χ =
[
χ(A)aχ(B)bχ(C)c

]1/(a+b+c)
(10)

where ECB and EVB are the energies of the conduction-band and valence-band edges, respec-
tively, Eg is the band gap, and χ is the absolute electronegativity of the semiconductor. Here, χ(A),
χ(B), and χ(C) denote the electronegativities of atoms A, B, and C, respectively, while Ec is the
energy of free electrons on the hydrogen scale (∼ 4.5 eV).

The absolute electronegativity of Ag3PO4 is calculated to be 5.96 eV, whereas the conduction-
band minimum (ECB) and valence-band maximum (EVB) are located at 0.23 eV and 2.69 eV, respec-
tively. Since ECB is more positive than the reduction potential of H+/H2 (0 eV), Ag3PO4 is incapable
of reducing hydrogen and, therefore, cannot participate in the hydrogen evolution reaction (HER).
In contrast, EVB is significantly higher than the oxidation potential of water to oxygen (O2/H2O,
+1.23 eV), enabling Ag3PO4 to oxidize water to produce O2 as well as to oxidize organic compounds,
particularly in photocatalytic cycles. The obtained results are in good agreement with previous
theoretical studies [52,57] and available experimental data [40].

Figure 5. Results of calculations of the positions of the valence band (VB) and conduction band (CB).

Conclusions
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We conducted a comprehensive study of the electronic structure, mechanical stability, and
transport properties of silver phosphate Ag3PO4 in the cubic modification using the DFT method
with Hubbard corrections. It was shown that the studied material has a narrow band gap and is highly
sensitive to deformation. Analysis of the transport characteristics and the effects of deformation
indicates the predominance of electronic conductivity, which decreases sharply under mechanical
stress. The identified high mobility of charge carriers not only ensures efficient transport but also
leads to rapid recombination of electron–hole pairs. Analysis of the binding energies revealed that
the Ag3PO4 structure is stabilized by PO4 tetrahedra, while Ag atoms are more weakly bound to
the crystal lattice, explaining the tendency to form silver vacancies. The positions of the energy band
edges confirm the ability of Ag3PO4 to exhibit oxidizing properties, particularly in processes such
as oxygen generation and the decomposition of organic compounds. The obtained results provide
the basis for further in-depth study of Ag3PO4 with the aim of structural optimization aimed at
increasing its resistance to photocorrosion and improving its performance in composite photocatalysts.
The obtained dependences of the electronic properties of silver phosphate on tension and compression
may find application in the design of small strain detectors.
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Abbreviations

DFT Density Functional Theory
GGA Generalized Gradient Approximation
PBE Perdew–Burke–Ernzerhof functional
ONCVPSP Optimized norm-conserving Vanderbilt pseudopotentials
U Hubbard parameter
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
C3D Elastic modulus constant
EI Strain potential constant
D Efficiency of electron-hole separation
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DOS Density of States
PDOS Projected Density of States
EOS Birch–Murnagen equation of state
Ebind Binding energy
VBM Valence Band Maximum
CBM Conduction Band Minimum
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