Механизмы агрегации наночастиц NI и NIO в вакууме
Аннотация
The limitations of the measuring capabilities of experimental devices complicate the complete understanding of nanoparticle aggregation processes. In particular, the formation of nanocomposites such as Ni/NiO and the study of their aggregation mechanisms to control the relative composition of the composite remain relevant. In this regard, this article uses reactive molecular dynamics modeling to study the mechanisms of aggregation of Ni and NiO nanoclusters. The results showed that oxygen atoms have a significant effect on the aggregation process. In particular, due to oxygen atoms, the stability of NiO nanoclusters is high, and oxygen atoms reduce the degree of bonding of nickel atoms in NiO nanoclusters with other nanocluster atoms. As a result, while Ni nanoclusters tend to stabilize by forming mutual chemical bonds due to aggregation, NiO nanoclusters try to aggregate through weak van der Waals forces. Overall, this study provides a better understanding of the aggregation process of Ni and NiO nanoclusters at the atomic level and is important for future research aimed at developing metal/metal oxide nanocomposites with desired properties.
Ключевые слова:
Об авторах
Список литературы
E. Roduner, Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583.
D. Guo, G. Xie, and J. Luo, Mechanical Properties of Nanoparticles: Basics and Applications. J. Phys. D: Appl. Phys. 2013, 47, 013001.
P. Kumbhakar, S. S. Ray, and A. L. Stepanov, Optical Properties of Nanoparticles and Nanocomposites.
Journal of Nanomaterials 2014, Article ID 181365.
I. Matsui, Nanoparticles for Electronic Device Applications: A Brief Review. Journal of Chemical Engineering of Japan 2005, 38, 535.
Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of Magnetic Nanoparticles in Biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167.
B. R. Cuenya, Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid Films 2010, 518, 3127.
S. A. A. Rizvi and A. M. Saleh, Applications of Nanoparticle Systems in Drug Delivery Technology.
Saudi Pharmaceutical Journal 2018, 26, 64.
S. Singh, V. Kumar, R. Romero, K. Sharma, and J. Singh, Applications of Nanoparticles in Wastewater Treatment. In Nanobiotechnology in Bioformulations, R. Prasad, V. Kumar, M. Kumar, and D. Choudhary, Eds.; Springer International Publishing, Cham, 2019, pp. 395–418.
X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18, 319.
E. Dabirian, A. Hajipour, A. A. Mehrizi, C. Karaman, F. Karimi, P. Loke-Show, and O. Karaman, Nanoparticles Application on Fuel Production from Biological Resources: A Review. Fuel 2023, 331, 125682.
J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, and A. A. Romero, Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem 2009, 2, 18.
C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang, and Y. Lei, Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries. Advanced Functional Materials 2017, 27, 1604307.
S. Akin, Y. Liu, M. I. Dar, S. M. Zakeeruddin, M. Grätzel, S. Turan, and S. Sonmezoglu, Hydrothermally Processed CuCrO2 Nanoparticles as an Inorganic Hole Transporting Material for Low-Cost Perovskite Solar Cells with Superior Stability. J. Mater. Chem. A 2018, 6, 20327.
S. Li, Fe5C2 Nanoparticles as Low-Cost HER Electrocatalyst: The Importance of Co Substitution. Science Bulletin 2018, 63, 1358.
B. Ksapabutr, T. Chalermkiti, and M. Panapoy, Facile and Low-Cost Synthesis of Ni/NiO Catalyst by Microwave Plasma Method for Carbon Nanotubes Growth Using Plastic Waste as Carbon Source. Adv Sci Lett 2013, 19, 268.
C. Wang, Low-Cost Visible-Light Photosynthesis of Water and Adsorbed Carbon Dioxide into Long-Chain Hydrocarbons. Chemical Physics Letters 2020, 739, 136985.
Z. Wang, J. Wang, L. Zhu, Y. He, and T. Duan, Scalable Fe@FeO Core-Shell Nanoparticle-Embedded Porous Wood for High-Efficiency Uranium(VI) Adsorption. Applied Surface Science 2020, 508, 144709.
A. Kremenović, B. Jančar, M. Ristić, M. Vučinić-Vasić, J. Rogan, A. Pačevski, and B. Antić, Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction. J. Phys. Chem. C 2012, 116, 4356.
S.-E.-T. Siddiqui, Md. A. Rahman, J.-H. Kim, S. B. Sharif, and S. Paul, A Review on Recent Advancements of Ni-NiO Nanocomposite as an Anode for High-Performance Lithium-Ion Battery. Nanomaterials 2022, 12, 2930.
Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, and J. Q. Xiao, Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angew Chem Int Ed 2011, 50, 6847.
M. Gong, Nanoscale Nickel Oxide/Nickel Heterostructures for Active Hydrogen Evolution Electrocatalysis.
Nat Commun 2014, 5, 4695.
V. Ganeshchandra Prabhu, A. R. Paloly, N. G. Divya, and M. J. Bushiri, Photocatalytic and Ferromagnetic Properties of Electrically Conducting Multifunctional Ni/NiO Nanocomposites in Amorphous Carbon Matrix. Materials Science and Engineering: B 2018, 228, 132.
M. S. Alnarabiji, O. Tantawi, A. Ramli, N. A. Mohd Zabidi, O. B. Ghanem, and B. Abdullah, Comprehensive Review of Structured Binary Ni-NiO Catalyst: Synthesis, Characterization and Applications. Renewable and Sustainable Energy Reviews 2019, 114, 109326.
S. Ekeroth, S. Ikeda, R. D. Boyd, T. Shimizu, and U. Helmersson, Growth of Semi-Coherent Ni and NiO Dual-Phase Nanoparticles Using Hollow Cathode Sputtering. J Nanopart Res 2019, 21, 37.
Q. Li, M. Wang, Y. Liang, L. Lin, T. Fu, P. Wei, and T. Peng, Molecular Dynamics Simulations of Aggregation of Copper Nanoparticles with Different Heating Rates. Physica E: Low-Dimensional Systems and Nanostructures 2017, 90, 137.
N. Eom, M. E. Messing, J. Johansson, and K. Deppert, Sintering Mechanism of Core@Shell Metal@Metal Oxide Nanoparticles. J. Phys. Chem. C 2021, 125, 16220.
H. Rahbar, E. Goudeli, and M. R. Kholghy, Sintering Rate of Nickel Nanoparticles by Molecular Dynamics.
J. Phys. Chem. C 2023, 127, 6802.
G. M. Al-Senani, F. F. Al-Fawzan, M. Alshabanat, O. H. Abd-Elkader, M. Nasrallah, and M. Nasrallah, One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites. Crystals 2023, 13, 10.
A. P. Thompson, LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Computer Physics Communications 2022, 271, 108171.
P. Van de Sompel, U. Khalilov, and E. C. Neyts, Contrasting H-Etching to OH-Etching in Plasma-Assisted Nucleation of Carbon Nanotubes. J. Phys. Chem. C 2021, 125, 7849.
Institute of Ion-Plasma and Laser Technologies and I. Urunov, AGGREGATION MECHANISMS OF 1- NM DIAMETER NIO NANOCLUSTERS. in Modern Methods and Innovation Technologies in Education: Present Status, Important Questions and Challenges (Tashkent International University of Education, 2023), pp. 51–56.
C. Zou, Y. K. Shin, A. C. T. van Duin, H. Fang, and Z.-K. Liu, Molecular Dynamics Simulations of the Effects of Vacancies on Nickel Self-Diffusion, Oxygen Diffusion and Oxidation Initiation in Nickel, Using the ReaxFF Reactive Force Field. Acta Materialia 2015, 83, 102.
D. J. Evans and B. L. Holian, The Nose–Hoover Thermostat. The Journal of Chemical Physics 1985, 83, 4069.
U. Khalilov and E. C. Neyts, Mechanisms of Selective Nanocarbon Synthesis inside Carbon Nanotubes.
Carbon 2021, 171, 72.
J. Lu, D. Liu, X. Yang, Y. Zhao, H. Liu, H. Tang, and F. Cui, Molecular Dynamics Simulations of Interfacial Interactions between Small Nanoparticles during Diffusion-Limited Aggregation. Applied Surface Science 2015, 357, 1114.
P. Vijaya Kumar, A. Jafar Ahamed, and M. Karthikeyan, Synthesis and Characterization of NiO Nanoparticles by Chemical as Well as Green Routes and Their Comparisons with Respect to Cytotoxic Effect and Toxicity Studies in Microbial and MCF-7 Cancer Cell Models. SN Appl. Sci. 2019, 1, 1083.
M. Bonomo, Synthesis and Characterization of NiO Nanostructures: A Review. J Nanopart Res 2018, 20, 222.
S. Li, Q. Wang, J. Lu, X. Deng, S. Bi, Z. Song, C. Guo, R. Li, and X. Yan, Precise Control of the Growth and Size of Ni Nanoparticles on Al2O3 by a MOF-Derived Strategy. CrystEngComm 2019, 21, 6709.
Copyright (c) 2024 Ф.М. Сафаров (Автор); Ф.Х. Хайдаров, K.Б. Эгамбердиев, Т.А. Ахмаджанов, У.Б. Халилов (Переводчик)

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.