The center-of-mass energy of colliding charged particles

FULL TEXT:

Abstract

In the mathematical characterization of black holes, there are various solutions both within the framework of general relativity and in alternative theories of gravity. These solutions can be theoretically studied by analyzing the behavior of test particles moving around black holes. If a magnetic field exists around a black hole, and if the particles possess electric charge or magnetic properties, such processes become crucial in testing gravity theories and understanding the nature of black holes. This research focuses on the electromagnetic fields and the motion of charged and test particles around axially symmetric black holes located in an external magnetic field. It also studies how the effective potentials of particles change, particularly through the example of the Kerr–Taub–NUT metric.


Background. To explore black hole solutions in quasi-Schwarzschild and conformal gravity settings by studying the motion of particles around black holes.


Materials and methods. The mathematical framework of macroscopic electrodynamics in general relativity; analytical and numerical methods for solving the equations of motion for particles and fields; analysis of the influence of spacetime parameters on particle motion; examination of how these solutions differ from those in general relativity and their ability to reveal new effects; assessment of the contribution of an external magnetic field to the problem.


Results. For the first time, the motion of particles in external magnetic fields around black holes in quasi-Schwarzschild and conformal gravity contexts has been studied. The extent to which these solutions differ from those in general relativity has been analyzed. The influence of the external electromagnetic field on these effects was evaluated for the first time for the considered solutions. The deformation parameter of the quasi-Schwarzschild solution was assessed for both the presence and absence of an external magnetic field, in terms of how well it substitutes the spin parameter in the Kerr solution of general relativity.


Conclusion. We demonstrated the degeneracy relations between the magnetic parameter and the ISCO radius values and found that for two different positive values of the deviation parameter, the ISCO radius can be the same for specific magnetic parameter values. The study can be applied to the dynamics of magnetized matter and neutron stars in environments close to SMQT. The investigation of magnetic dipole dynamics showed that the maximum value of the quasi-Schwarzschild field of a black hole in an external magnetic field is effective. The values of the singular angular momentum of magnetic dipoles and the deviation parameter of spacetime around the black hole increase with the magnetic parameter.

About the Authors

List of references

Javlon Rayimbaev, Pulat Tadjimuratov, Ahmadjon Abdujabbarov,Bobomurat Ahmedov, Malika Khudoyberdieva, Dynamics of test particles and twin peaks QPOs around regular black holes in modified gravity // Galaxies 9(4), id: 75 (2021) (№ 1. Web of Science: IF=2.05).

Javlon Rayimbaev, Ahmadjon Abdujabbarov, Mubasher Jamil Wen-Biao Han , Malika Khudoyberdieva, Dynamics of test particles around charged black holes in Einstein-Æther gravity// Modern Physics Letters A. – World Scientific(Singapore),vol.37, Iss:33, Article: 2250220 (2022),31 pages, (№ 1.Web of Science: IF=2.066).

Xudoyberdiyeva Malika, Jurayeva Nozima, Tarkibida kompakt ob’yektlar bo‘lgan tor qo‘shaloq sistemalarning elektromagnit nurlanishi // Scientific journal of Samarkand State University. 2020, №5(141)(01.00.00.№2).

Xudoyberdiyeva Malika, Elektromagnit maydonda qora o‘ra atrofidagi zaryadlangan zarralar // Scientific journal of Namangan State University. 2021, №10(22) (01.00.00. №14).

Xudoyberdiyeva Malika, Qora o‘ralar atrofidagi elektromagnit maydon //Scientific journal of Urgench State University. 2021, №10(17) (01.00.00. №12).

Xudoyberdiyeva Malika, Juraeva Nozima, Qora o‘ra atrofida energiya olish mexanizmlari //Scientific journal of Namangan State University. 2020, №12(20).

Malika, X. (2021, March). The penrose process of kerr-taub-nut spacetime. In E-Conference Globe (pp. 240-241).

Turimov, B.; Rahimov, O. The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime. Universe 2022,8, 507. [CrossRef].

J. Rayimbaev, B. Majeed, M. Jamil, K. Jusufi, and A. Wang, Physics of the Dark Universe 35, 100930 (2022), 2202.11509.

Z. Stuchl´ık and J. Vrba, Universe 7, 279 (2021), 2108.09562. [116] Z. Stuchl´ık and J. Vrba, European Physical Journal Plus 136, 1127 (2021), 2110.10569.

Z. Stuchl´ık and J. Vrba, J. Cosmol. Astropart. Phys 2021, 059 (2021), 2110.07411.

J. Rayimbaev, S. Shaymatov, and M. Jamil, European Physical Journal C 81, 699 (2021), 2107.13436.

J. Rayimbaev, P. Tadjimuratov, A. Abdujabbarov, B. Ahmedov, and M. Khudoyberdieva, Galaxies 9, 75 (2021), 2010.12863.

J. Rayimbaev, A. Abdujabbarov, and H. Wen-Biao, Phys.Rev.D 103, 104070 (2021).

Z. Stuchl´ık, A. Kotrlova, and G. T ´ or¨ ok, As- ¨ tron.Astrophys. 525, A82 (2011), 1010.1951.

Tor¨ ok, G., Kotrlov ¨ a, A., Sr ´ amkov ´ a, E., and Stuchl ´ ´ık, Z., Astron.Astrophys. 531, A59 (2011), URL https://doi.org/10.1051/0004-6361/201015549.

J. Rayimbaev, P. Tadjimuratov, A. Abdujabbarov, B. Ahmedov, and M. Khudoyberdieva, Galaxies 9, 75 (2021), 2010.12863.

J. Rayimbaev, A. Abdujabbarov, M. Jamil, B. Ahmedov, and W.-B. Han, Phys. Rev. D 102, 084016 (2020), URL https://link.aps.org/doi/10.1103/.

A. H. Bokhari, J. Rayimbaev, and B. Ahmedov, Phys. Rev. D 102, 124078 (2020), URL https://link.aps. org/doi/10.1103/PhysRevD.102.124078.

N. Juraeva, J. Rayimbaev, A. Abdujabbarov, B. Ahmedov, and S. Palvanov, The European Physical Journal C 81, 124078 (2021), URL https://doi.org/10.1140/epjc/s10052-021-08876-5.

S. Y. Cheung, P. D. Lasky, and E. Thrane, Does spacetime have memories? Searching for gravitational- wave memory in the third LIGOVirgo-KAGRA gravitational-wave transient catalogue, Class. Quant. Grav. 41, 115010 (2024), arXiv:2404.11919 [gr-qc].

G. Agazie et al. (NANOGrav), The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory, Astrophys. J. 963, 61 (2024), arXiv:2307.13797.

A. M. Grant and D. A. Nichols, Outlook for detecting the gravitational-wave displacement and spin memory effects with current and future gravitationalwave detectors, Phys. Rev. D 107, 064056 (2023), [Erratum: Phys.Rev.D 108, 029901 (2023)], arXiv:2210.16266 [gr-qc].

S. Sun, C. Shi, J.-d. Zhang, and J. Mei, Detecting the gravitational wave memory effect with TianQin, Phys. Rev. D 107, 044023 (2023), arXiv:2207.13009.

S. Gasparotto, R. Vicente, D. Blas, A. C. Jenkins, and E. Barausse, Can gravitational-wave memory help constrain binary black-hole parameters? A LISA case study, Phys. Rev. D 107, 124033 (2023), arXiv:2301.13228 [gr-qc].

H. Inchausp´e, S. Gasparotto, D. Blas, L. Heisenberg, J. Zosso, and S. Tiwari, Measuring gravitational wave memory with LISA, arXiv (2024), arXiv:2406.09228 [gr-qc].

S. Hou, T. Zhu, and Z.-H. Zhu, Asymptotic analysis of Chern-Simons modified gravity and its memory effects, Phys. Rev. D 105, 024025 (2022), arXiv:2109.04238 [gr-qc].

G. Pratten et al., Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes, Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc].

Views: 16

How to Cite

The center-of-mass energy of colliding charged particles. (2024). Uzbek Journal of Modern Physics, 1(2), 94-102. https://ujmph.uz/index.php/journal/article/view/26
ISSN 0000-0000 (Print)
ISSN 0000-0000 (Online)