Роль легирования атомом металла в транспортных свойствах зигзагообразной графеновой наноленты с дефектом вакансии

ПОЛНЫЙ ТЕКСТ:

Аннотация










Графеновые наноленты (GNRs) с структурными дефектами привлекли значительный интерес благодаря их настраиваемым электронным и магнитным свойствам. В этом исследовании мы изучаем роль легирования переходными металлами (Co и Fe) в транспортных свойствах зигзагообразных GNRs, содержащих одиночные вакансии, завершенные либо ненасыщенными углеродными атомами, либо пиридиновыми атомами азота. Используя теорию функционала плотности (DFT) в сочетании с формализмом неквазиравновесных функций Грина, мы анализируем электронные транспортные характеристики и спинозависимые эффекты. Наши результаты показывают, что легирование металла оказывает противоположное влияние в зависимости от типа дефекта: в вакансиях, завершенных углеродом, атомы металла уменьшают проводимость из-за усиленной локализации электронных состояний, в то время как в пиридиновых дефектах они увеличивают проводимость, расширяя состояния передачи. Кроме того, легирование металла значительно улучшает эффективность фильтрации спина, что делает легированные GNRs перспективными для спинтронных приложений. Эти результаты подчеркивают важность инженерии дефектов в наноустройствах на основе графена и предоставляют идеи для оптимизации электронных транспортных свойств через избирательные стратегии легирования.










Об авторах

Список литературы

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Mater. 6 (2007) 183.

A. K. Geim, Graphene: Status and Prospects, Science 324 (2009) 1530-1534.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors, Nature Mater. 11 (2012) 865-871.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, A. Song, Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers, Nano Lett. 17 (2017) 7015-7020.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, G. Fedorov, Resonant terahertz detection using graphene plasmons, Nat. Commun. 9 (2019) 5392.

G. R. Berdiyorov, H. Hamoudi, Creating graphene geometry diodes through fluorination: First-principles studies, Comput. Mater. Sci. 188 (2021) 110209.

M. Andelkovic, Kh.Yu. Rakhimov, A. Chaves, G.R. Berdiyorov, M.V. Milošević, Wave-packet propagation in a graphene geometric diode, Physica E 147 (2023) 115607.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wan, R. R. Nair, A. K. Geim, Free-standing graphene at atomic resolution, Nat. Nanotechnol. 3 (2008) 676-681.

J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl, Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes, Nano Lett. 8 (2008) 3582-3586.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett. 12 (2012) 3925-3930.

U. Khalilov, M. Yusupov, G.B. Eshonqulov, E.C. Neyts, G.R. Berdiyorov, Atomic level mechanisms of graphene healing by methane-based plasma radicals, FlatChem 39 (2023) 100506.

A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430 (2004) 870.

F. Banhart, J. Kotakoski, A. V. Krasheninnikov, Structural Defects in Graphene, ACS Nano 5 (2011) 26-41.

R. H. Telling, M. I. Heggie, Radiation defects in graphite, Philos. Mag. 87 (2007) 4797-4846.

X. Wang, S. M. Tabakman, H. Dai, Atomic Layer Deposition of Metal Oxides on Pristine and Functional- ized Graphene, J. Am. Chem. Soc. 130 (2008) 8152.

S. Malola, H. Hakkinen, P. Koskinen, Gold in graphene: in-plane adsorption and diffusion, Appl. Phys. Lett. 94 (2009) 043106.

A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, R. M. Nieminen, Embedding Transition- Metal Atoms in Graphene: Structure, Bonding, and Magnetism, Phys. Rev. Lett. 102 (2009) 126807.

P. A. Denis, Density Functional Investigation of Thioepoxidated and Thiolated Graphene, J. Phys. Chem. C 113 (2009) 5612-5619.

N. Ghaderi, M. Peressi, First-Principle Study of Hydroxyl Functional Groups on Pristine, Defected Graphene, and Graphene Epoxide, J. Phys. Chem. C 114 (2010) 21625.

J. Narayan, K. Bezborah, Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials, RSC Adv. 14 (2024) 13413-13444.

G. R. Berdiyorov, H. Abdullah, M. Al Ezzi, G. V. Rakhmatullaeva, H. Bahlouli, N. Tit, CO2 adsorption on Fe-doped graphene nanoribbons: First principles electronic transport calculations, AIP Adv. 6 (2016) 125102.

G. R. Berdiyorov, H. Bahlouli, F. M. Peeters, Effect of substitutional impurities on the electronic transport properties of graphene, Physica E 84 (2016) 22-26.

A. Kanzariya, S. Vadalkar, S. K. Jana, L.K. Saini, P. K. Jha, An ab-initio investigation of transition metal- doped graphene quantum dots for the adsorption of hazardous CO2, H2S, HCN, and CNCI molecules, J. Phys. Chem. Solids 186 (2024) 111799.

E. T. Sayed, J. B.M. Parambath, M. A. Abdelkareem, H. Alawadhi, A.G. Olabi, Ni-based metal organic frameworks doped with reduced graphene oxide as an effective anode catalyst in direct ethanol fuel cells, J. Alloys Compd. 976 (2024) 173194.

F. Boltayev, G.B. Eshonqulov, G.R. Berdiyorov, Electronic transport calculations for CO2 adsorption on calcium-decorated graphene nanoribbons, Comput. Mater. Sci. 145 (2018) 134-139.

T. Kousar, M. Aadil, S. Zulfiqar, S. M. Ibrahim, S. Mubeen, W. Hassan, K. Shafiq, F. Mahmood, Facile synthesis of graphene anchored rare earth doped mixed metal ferrite nanorods: A potential candidate for azo dye mineralization, J. Rare Earths 42 (2024) 907-916.

M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials, Carbon 132 (2018) 104-140.

M. Datt Bhatt, H. Kim, G. Kim, Various defects in graphene: a review, RSC Adv. 12 (2022) 21520.

R. Saini, F. Naaz, A. H. Bashal, A. H. Pandit, U. Farooq, Recent advances in nitrogen-doped graphene- based heterostructures and composites: mechanism and active sites for electrochemical ORR and HER, Green Chem. 26 (2024) 57-102.

M. A. Olgar, S. Erkan, A. Altuntepe, R. Zan, Nitrogen doped single layer graphene for CZTS-based thin film solar cells, Opt. Mater. 150 (2024) 115167.

O. Stephan, P. Ajayan, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266 (1994) 1863-1865.

D. Rao, Y. Wang, Z. Meng, S. Yao, X. Chen, X. Shen, R. Lu, Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects, Int. J. Hydrogen Energy 40 (2015) 14154-14162.

L.-L. Liu, C.-P. Chen, L.-S. Zhao, Y. Wang, X.-C. Wang, Metal-embedded nitrogen-doped graphene for H2O molecule dissociation, Carbon 115 (2017) 773-780.

A. Cho, B. J. Park, J. W. Han, Computational Screening of Single-Metal-Atom Embedded Graphene-Based Electrocatalysts Stabilized by Heteroatoms, Front. Chem. 10 (2022) 873609.

P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, T. Butz, Induced Magnetic Ordering by Proton Irradiation in Graphite, Phys. Rev. Lett. 91 (2003) 227201.

S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S.C. Deevi, P. M. Ajayan, Irradiation-Induced Magnetism in Carbon Nanostructures, Phys. Rev. Lett. 95 (2005) 097201.

P. O. Lehtinen, A. S. Foster, A. Ayuela, T. T. Vehviläinen, R. M. Nieminen, Structure and magnetic properties of adatoms on carbon nanotubes, Phys. Rev. B 69 (2004) 155422.

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

G. R. Berdiyorov, M. Alsalama, H. Hamoudi, Length-dependent high-frequency response of aromatic and aliphatic molecules: predictions from first-principles calculations, J. Phys. Chem. Solids 178 (2023) 111343.

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correc- tion, J. Comput. Chem. 27 (2006) 1787-1799.

H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, G.-M. Rignanese, The pseudodojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226 (2018) 39-54.

M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilib- rium electron transport, Phys. Rev. B 65 (2002) 165401.

S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, QuantumATK: An integrated platform of electronic and atomic-scale modelling tools, J. Phys.: Condens. Matter 32 (2020) 015901.

S. Smidstrup, D. Stradi, J. Wellendorff, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, T. Ghosh, E. Jonsson, H. Jonsson, K. Stokbro, First-principles Green’s-function method for surface calculations: A pseudopotential localized basis set approach, Phys. Rev. B 96 (2017) 195309.

G. R. Berdiyorov, B. Mortazavi, H. Hamoudi, Anisotropic charge transport in 1D and 2D BeN4 and MgN4 nanomaterials: A first-principles study, FlatChem 31 (2022) 100327.

Z. Zanolli, J.-C. Charlier, Spin transport in carbon nanotubes with magnetic vacancy-defects, Phys. Rev. B 81 (2010) 165406.

Просмотров: 63

Как цитировать

Роль легирования атомом металла в транспортных свойствах зигзагообразной графеновой наноленты с дефектом вакансии. (2024). Узбекский журнал современной физики, 1(2), 62-70. https://ujmph.uz/index.php/journal/article/view/4
ISSN 0000-0000 (Print)
ISSN 0000-0000 (Online)