Silikat oynasidagi nanokristallar zaryad tashuvchini lokalizatsiya qilish uchun potentsial quduq sifatida

TO'LIQ MATN:

Annotatsiya

Maqsad. Pishirish jarayonida silikat shishasida o'z-o'zidan paydo bo'ladigan nanokristallar erkin zaryad tashuvchilar lokalizatsiya qilinadigan potentsial chuqurlar sifatida ko'rib chiqiladi. Ushbu potentsial chuqurlarning chuqurligi birinchi marta turli haroratlarda silikat ko'zoynaklarining kristallanish davomiyligiga qarab baholandi. Turli xil kompozitsiyalarning silikat oynasi uchun bunday potentsial chuqurlarning chuqurligi 0,26-0,87 ev ga teng bo'lib chiqdi, optik assimilyatsiya chetida aniqlangan oynaning o'zi oralig'i esa 3 ev dan oshdi. Ko'rinib turibdiki, shisha bo'shliqning optik kengligi potentsial chuqurlarning chuqurligini o'z ichiga olgan o'rtacha qiymatdir. Shu bilan birga, bu chuqurliklar qalin plyonkali rezistorlarning (ruteniy oksidi birikmalari bilan qo'shilgan silikat ko'zoynaklar) elektr o'tkazuvchanligi mexanizmi uchun muhim bo'lib, o'zgaruvchan uzunlikka sakrash uchun sharoit yaratadi (Mott mexanizmi). Nanokristalli strukturaning o'rganilayotgan materialdagi potentsial chuqurlarning chuqurligiga ta'sirini o'rganish, shuningdek, nanozarrachalarning kattaligi va tizimning energiya xususiyatlari o'rtasidagi bog'liqlikni aniqlash.


Materiallar va usullar. Pishirish jarayonida silikat shishasida o'z-o'zidan paydo bo'ladigan nanokristallar erkin zaryad tashuvchilar lokalizatsiya qilinadigan potentsial chuqurlar sifatida ko'rib chiqiladi. Ushbu potentsial chuqurlarning chuqurligi birinchi marta turli haroratlarda silikat ko'zoynaklarining kristallanish davomiyligiga qarab baholandi. Turli xil kompozitsiyalarning silikat oynasi uchun bunday potentsial chuqurlarning chuqurligi 0,26-0,87 ev ga teng bo'lib chiqdi, optik assimilyatsiya chetida aniqlangan oynaning o'zi oralig'i esa 3 ev dan oshdi. Ko'rinib turibdiki, shisha bo'shliqning optik kengligi potentsial chuqurlarning chuqurligini o'z ichiga olgan o'rtacha qiymatdir. Shu bilan birga, bu chuqurliklar qalin plyonkali rezistorlarning (ruteniy oksidi birikmalari bilan qo'shilgan silikat ko'zoynaklar) elektr o'tkazuvchanligi mexanizmi uchun muhim bo'lib, o'zgaruvchan uzunlikdagi sakrashlar uchun sharoit yaratadi (Mott mexanizmi). Maqsad. Nanokristalli strukturaning o'rganilayotgan materialdagi potentsial chuqurlarning chuqurligiga ta'sirini o'rganish, shuningdek, nanozarrachalarning kattaligi va tizimning energiya xususiyatlari o'rtasidagi o'zaro bog'liqlikni aniqlash.


Natijalar. Tadqiqot shuni ko'rsatdiki, nanokristallar hajmining pasayishi potentsial chuqurlarning chuqurligining oshishiga olib keladi, bu kvant o'lchovli ta'sirlar bilan bog'liq. Rentgen strukturasi tahlili nanokristalli strukturaning shakllanishini tasdiqladi va spektroskopik o'lchovlar nanozarrachalarning o'lchamiga qarab energiya darajasining siljishini ko'rsatdi. Raqamli hisob-kitoblar nanokristallarning materialning elektron xususiyatlariga ta'sirini tasdiqlovchi eksperimental ma'lumotlarga mos keladi.


Xulosa. Tadqiqot shuni ko'rsatdiki, nanokristalli struktura potentsial chuqurlarning chuqurligiga ta'sir qiladi, bu kvant o'lchovli effektlarning namoyon bo'lishi bilan bog'liq. Eksperimental va nazariy natijalar nanozarrachalar hajmining pasayishi energiya uzilishining oshishiga va materialning elektron xususiyatlarining o'zgarishiga olib kelishini tasdiqladi. Topilmalar ma'lum energiya xususiyatlariga ega yangi nanostrukturali materiallarni ishlab chiqishda foydali bo'lishi mumkin.

Mualliflar haqida

Adabiyotlar ro'yxati

A.N. Lopanov, N.S. Lozinskyy, Ya.A. Moroz. Chemical processes accompanying the formation of modified ruthenium resistors and their functional properties. Russian Chemical Bulletin, International Edition 69

(9) 1724—1730 (2020).

F. Cheng, W. Kong, T. Xuan, A. Chang. Effect of sintering temperature on structural and electrical properties of Mn0.55Fe1.25Cu2Ni2.2O4+ NTC thick film. Journal of Materials Science: Materials in Electronics 31, 12848–12855 (2020).

M. Wen, X. Guan, Hui Li, J. Ou. Temperature characteristics of thick-film resistors and its applicationas a strain sensor with low temperature-sensitivity. Sensors and Actuators A 301 (2020) 111779.

R.B. Nuernberg, N.M.P. Machado, M. Malki, M. Neyret. Electrical behavior of RuO2-glass composites: The effect of RuO2 particle size on the percolation threshold. Journal of Nuclear Materials 546 (2021) 152777.

A. Piarristeguy, R. Nuernberg, D. Jouglard, M. Ramonda, R. Arinero, A. Pradel, M. Neyret. High-resolution electrical characterization of RuO2-borosilicate glass composites. Journal of Alloys and Compounds 876 (2021) 160123.

C. Ferrero. Proposed theoretical models for thick film transport mechanisms: Example of thick film strain gauges on enamelled steels 2022. https://www.researchgate.net/publication/358042608.

G. Abdurakhmanov. Electrical conduction in doped silicate glass (thick film resistors). In: New Insights into Physical Sciences. V. 4, 47-71. London-Hooghly, Book Publishers International, 2020.

A.I. Berezhnoy. Sitals and photositals. Moscow: Mashinostroenie Publ., 1966. 347 p. In Russian: А. И. Бережной. Ситаллы и фотоситаллы. – Москва: Машиностроение, 1966. – 347 с.

L.I. Demkina. Physico-chemical fundamentals of optical glass production. Moscow: Khimiya Publ., 1976. In Russian: Л. И. Демкина. Физико-химические основы производства оптического стекла. – Москва: Химия, 1976.

E.Ya. Mukhin, N.G. Gutkina. Glass crystallization and methods of its prevention. Moscow: State Publishing House of the Defense Industry, 1960. In Russian: Е.Я. Мухин, Н.Г. Гуткина. Кристаллизация стекол и методы ее предупреждения. – Москва: Гос. изд-во Оборонной промышленности, 1960.

N.N. Kachalov, V.G. Voano. Fundamentals of optical glass production. Leningrad: ONTI Chemteoret, 1936. 196 p. pp. 75-76. In Russian: Н.Н. Качалов, В.Г. Воано. Основы производства оптического стекла. – Ленинград: ОНТИ Химтеорет, 1936. – 196 с. с. 75-76.

Optical materials and technologies. https://portal.tpu.ru/SHARED/e/ELP/teaching/omit/Tab1/Tab/ Lekcii$_$OMIT-1.pdf. accessed 03/23/2025. In Russian: Оптические материалы и технологии. https:

//portal.tpu.ru/SHARED/e/ELP/teaching/omit/Tab1/Tab/Lekcii$_$OMIT-1.pdf. доступа 23.03.2025.

Alexandrov, D. Heavy Electrons in Nano-Structure Clusters of Disordered Solids. In: ICCF-14 Internat. Conf. Condensed Matter Nuclear Science. www.lenr-canr.org/acrobat/Alexandrovheavyelect.pdf.

Technical Data Sheet. https://www.tegs.ru/wp-content/uploads/2018/07/C87-2.pdf

OST 11 027.010-75. The glass is electro-vacuum. Stamps. In Russian: ОСТ 11 027.010-75. Стекло электровакуумное. Марки.

Technical Data Sheet. https://www.tegs.ru/wp-content/uploads/2018/07/C78-5.pdf.

O.O. Molokanova, A.M. Karmokov, O.A. Molokanov, M.M. Karmokov, A.I. Khasanov, A.H. Dyshekova. The fundamental absorption and band gap of C87-2, C78-4, and C78-5 glasses. Physico-chemical aspects of studying clusters, nanostructures and nanomaterials. – 2023. – Vol. 15, 189-195. In Russian: О.О. Молоканова, А.М. Кармоков, О.А. Молоканов, М.М. Кармоков, А.И. Хасанов, А.Х. Дышекова. Фундаментальное поглощение и ширина запрещенной зоны стекол С87-2, С78-4, С78-5. Физико- химические аспекты изучения кластеров, наноструктур и наноматериалов. – 2023. – Вып. 15, 189-195.

S.V. Nemilov. Optical materials science: Optical glasses. St. Petersburg: ITMO Publ., 2011. In Russian: С.В. Немилов. Оптическое материаловедение: Оптические стекла. - СПб.: ИТМО, 2011.

Sidorov T.A. Infrared and ultraviolet spectra and the structure of lead-silicate glasses // J. Applied spectroscopy – Minsk, 1967. – Vol. 6, No. 1. - p. 98. In Russian: Сидоров Т.А. Инфракрасные и ультра- фиолетовые спектры и структура свинцово-силикатных стекол // Ж. прикладной спектроскопии – Минск, 1967. – Т. 6, №1. - С. 98.

I.I. Kitaygorodsky, N.N. Kachalov, Glass technology. Moscow: Stroyizdat Publ., 1961. In Russian: И.И. Китайгородский, Н.Н. Качалов, Технология стекла. – Москва: Стройиздат, 1961.

Ko'rishlar soni: 48

Как цитировать

Silikat oynasidagi nanokristallar zaryad tashuvchini lokalizatsiya qilish uchun potentsial quduq sifatida. (2024). Oʻzbek Zamonaviy Fizika Jurnali, 1(2), 86-93. https://ujmph.uz/index.php/journal/article/view/25

##plugins.generic.recommendBySimilarity.heading##

##plugins.generic.recommendBySimilarity.advancedSearchIntro##

ISSN 0000-0000 (Print)
ISSN 0000-0000 (Online)