Электронные и транспортные свойства Ag₃PO₄ как основа для каталитических применений

ПОЛНЫЙ ТЕКСТ:

Аннотация

Электронные, структурные и транспортные свойства полупроводника фосфата серебра Ag₃PO₄ исследованы методами первых принципов. Изучено влияние деформации на ширину запрещённой зоны, эффективные массы носителей заряда, их времена жизни и подвижности, константы упругих модулей и деформационные потенциалы. Показано, что фосфат серебра с кубической кристаллической решёткой является полупроводником как с прямыми, так и с непрямыми переходами (ширина запрещённой зоны соответственно 2,54 эВ и 2,47 эВ), что согласуется с экспериментальными данными. Установлено, что эффективные массы электронов примерно в три раза меньше, чем у дырок, а время жизни электронов (21,8 фс) значительно превышает время жизни дырок (2,9 фс), что указывает на электронный характер проводимости Ag₃PO₄. С увеличением деформации эффективная масса электронов возрастает, тогда как эффективная масса дырок практически не изменяется при сжимающей деформации, уменьшается при растягивающей деформации, а затем возвращается к исходному значению при дальнейшем увеличении растяжения. Подвижность электронов максимальна при отсутствии деформации (66,14 см²/(В·с)) и существенно снижается при её наличии. Полученные результаты могут быть использованы при проектировании фотокаталитических и тензочувствительных материалов на основе фосфата серебра.


 

Об авторах

Список литературы

A.K.D. Alsukaibi. Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes,2022, 10, 1968. https://doi.org/10.3390/pr10101968.

M.Pirilä,M. Saouabe, S.Ojala, B.Rathnayake, F.Drault, A.Valtanen, Mika Huuhtanen,Rachid Brahmi, R.L. Keiski. Photocatalytic Degradation of Organic Pollutants in Wastewater. Topics in Catalysis,2015, 58(14-17), 1085–1099. https://doi.org/10.1007/s11244-015-0477-7.

A. B. Djurišić, Y. He, A. M. C. Ng. Visible-light photocatalysts: Prospects and challenges. APL Materials, 2020, 8(3), 030903. https://doi.org/10.1063/1.5140497.

I. Abdelfattah, A.M. El-Shamy. A comparative study for optimizing photocatalytic activity of TiO2- based composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO additives. Sci.Rep., 2024, 14, 27175. https://doi.org/10.1038/s41598-024-77752-5.

Ayush Badoni, Sahil Thakur, Narayanasamy Vijayan, Hendrik Christoffel Swart, Mikhael Bechelany, Zhengsen Chen,Shuhui Sun,Qiran Cai, Ying Chen and Jai Prakash. Recent progress in understanding the role of graphene oxide, TiO2 and graphene oxide-TiO2 nanocomposites as multidisciplinary photocatalysts in energy and environmental applications. Catal. Sci. Technol., 2025,15, 1702-1770

Ngoc Thinh Nguyen, Van Anh Nguyen. Synthesis, Characterization, and Photocatalytic Activity of ZnO Nanomaterials Prepared by a Green, Nonchemical Route, Journal of Nanomaterials,2020,Volume 2020, 1-8 pages. https://doi.org/10.1155/2020/1768371.

K.Singh, Nancy, M.Bhattu, G. Singh,N. M. Mubarak,J. Singh. Light-absorption-driven photocatalysis and antimicrobial potential of PVP-capped zinc oxide nanoparticles. Sci.Rep.,2023, 13, 13886. https://doi.org/10.1038/s41598-023-41103-7.

S. Hernandez, D. Hidalgo,A. Sacco,A. Chiodoni, A. Lamberti, V. Cauda,E. Tresso and Guido Saracco. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting, Phys. Chem. Chem. Phys., 2015, 17, 7775. https://doi:10.1039/c4cp05857g.

G. Reis, S. Souza, H. Neto, R. Branches, R. Silva, L. Peres, D. Pinheiro, K. Lamy, H. Bencherif and T. Portafaix. Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil, Atmosphere,2022, 13, 1054. https://doi.org/10.3390/atmos1 3071054.

Z. Zhang,Y. Song,Y.Xiang and Z. Zhu. Vacancy defect engineered BiVO4 with low-index surfaces for photocatalytic application: a first principles study, RSC Adv., 2022, 12, 31317-25, https://doi.org/10.103 9/d2ra04890f.

C.Fu, C., Xu , B., Dong, L., Zhai, J., Wang, X., Wang, D.-Y. Highly efficient BiVO4 single-crystal nanosheets with dual modification: phosphorus doping and selective Ag modification. Nanotechnology, 2021, 32(32). https://doi.org/10.1088/1361-6528/abfc0b.

Y. Qi, J.Zhang, Y. Kong, Y.Zhao, S. Chen, D. Li, W. Liu, Y.Chen, T. Xie, Cui J., C. Li, K. Domen, F. Zhang. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13,484. https://doi.org/10.1038/s41467-022-28146-6.

M. Kaneko, S.Nozawa,Y. Yamashita. Electron-phonon interaction and structural changes in the elec- tronically excited state of WO3 photocatalyst. Frontiers in Energy Research, 2022, 10,1-9. https://doi.org/10.3389/fenrg.2022.933044.

M. Ujihara. The mechanism of water pollutant photodegradation by mixed and core–shell WO3/TiO2 nanocomposites. RSC Advances, 2023, 13(19),12926–12940. https://doi.org/10.1039/d3ra01582c.

A.Aldrees, , H.Khan, A. M Alzahrani, S. Dan’azumi. Synthesis and characterization of tungsten trioxide (WO3) as photocatalyst against wastewater pollutants. Applied Water Science,2023, 13(7), 156. https://doi.org/10.1007/s13201-023-01938-x.

M. Xu, Y.Zhao,Q.Yan. Degradation of aniline by bismuth oxyiodide (BiOI) under visible light irradiation. Journal of Environmental Science and Management, 2017, 20(1), 18–25. https://doi.org/10.47125/jesam/ 2017_1/03.

T. Ke, S.Shen,K. Yang, D. Lin. Construction and visible-light-photocatalysis of a novel ternary heterostruc- ture BiOI/(001)TiO2/Ti3C2. Nanotechnology,2020, 31(34), 345603. http://doi.org/10.1088/1361-6528/ ab90ba.

M. Khodamorady, K.Bahrami. A novel ZnS-CdS nanocomposite as a visible active photocatalyst for degradation of synthetic and real wastewaters. Sci. Rep.,2023, 13, 2177. https://doi.org/10.1038/s41598-023-28725-7.

Y.R. Lin, Y.C. Chang, Y.C. Chiao, F.H. Ko. Au@CdS Nanocomposites as a Visible-Light Photocatalyst for Hydrogen Generation from Tap Water. Catalysts, 2023, 13(1):33. https://doi.org/10.3390/catal13010033.

Q. Sun, N. Wang, J. Yu, J. C. Yu. A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018,1804368. https://doi/10.1002/adma.201804368.

M. Sigl, M. Egger, F. Warchomicka, D. Knez, M. Dienstleder,H. Amenitsch, G. Trimmel and T. Rath. ZnIn2S4 thin films with hierarchical porosity for photocatalysis, . Mater. Chem. A, 2024, 12,28965-28974. https://doi/10.1039/D4TA04237A.

Y. Liu, L. Ding,Q.Xu,Y. Maand, J. Hu. Construction of a hierarchical CoP@ZnIn2S4 heterojunction for photocatalytic hydrogen evolution, RSC Appl. Interfaces, 2024,1, 222-232. https://doi/10.1039/d3lf00157 a.

X. Yang,L.Zhang,D. Wang,Q. Zhang,J. Zenga and R. Zhang. Facile synthesis of nitrogen-defective g-C3N4 for superior photocatalytic degradation of rhodamine B, RSC Adv., 2021, 11, 30503-30509. https://doi/10.1039/D1RA05535F.

P. Xia, G. Li, X. Li, Sh. Yuan, K. Wang, D. Huang, Y. Ji,Y. Dong, X. Wu, L. Zhu, W. He, and L. Qiao. Synthesis of g-C3N4 from Various Precursors for Photocatalytic H2 Evolution under the Visible Light, Crystals 2022, 12,1719. https://doi.org/10.3390/cryst1212171.

H. Mogi, M. Okazaki, Sh. Nishioka and K. Maeda. In situ formation of a molecular cobalt(III )/AgCl photocatalyst for visible-light water oxidation, Sustainable Energy Fuels,2021, 5, 5694-5698, https://doi.org/10.1039/D1SE01075A.

Y.Bao, K. Chen.AgCl/Ag/g-C3N4 Hybrid Composites: Preparation, Visible Light-Driven Photocatalytic Activity and Mechanism, Nano-Micro Lett.,2016, 8(2):182–192, https://doi.org/10.1007/s40820-015-007 6-y.

H. Zheng,P. Li,L. Gao and G. Li. Hexagonal AgBr crystal plates for efficient photocatalysis through two methods of degradation: methyl orange oxidation and CrVI reduction, RSC Adv., 2017, 7, 25725-25731. https://doi.org/10.1039/C7RA02354E.

Xiaoyang Yue, Lirong Kong, Xiang Xu, Xiaoping Shen, Xuli Miao, Zhenyuan Ji, Jun Zhu. Synthesis of Ag@AgI plasmonic photocatalyst with enhanced visible-light photocatalytic activity, Desalination and Water Treatment, 2018, 123,156-167. https://doi.org/10.5004/dwt.2018.22653.

Z. Zhou, L. Zhang, W. Su, Y. Li, G. Zhang . Facile fabrication of AgI/Sb2O3 heterojunction photocatalyst with enhanced visible-light driven photocatalytic performance for efficient degradation of organic pollu- tants in water, Environmental Research, 2021, 197,111143. https://doi.org/10.1016/j.envres.2021.111143.

R. K. Santos, T.A. Martins, G.N. Silva, M. V. S. Conceiçaõ , I.C. Nogueira,E.Longo, G. Botelho. Ag3PO4/NiO Composites with Enhanced Photocatalytic Activity under Visible Light, ACS Omega 2020, 5, 2165121661. https://doi.org/10.1021/acsomega.0c02456.

M. Hagiri, K. Uchida, M. K. Sasaki Sh. Sakinah. Preparation and characterization of silver orthophosphate photocatalytic coating on glass substrate, Scientific Reports, 2021 11:13968. https://doi.org/10.1038/s415 98-021-93352-z.

M. Zhou, X. Tian, H. Yu, Z. Wang,C. Ren, L. Zhou, Y.-W. Lin, L. Dou.WO3 /Ag2CO3 Mixed Photocatalyst with Enhanced Photocatalytic Activity for Organic Dye Degradation,ACS Omega,2021, 6, 2643926453. https://doi.org/10.1021/acsomega.1c03694.

S. Ghazi,B. Rhouta, C. Tendero,F. Maury. Synthesis, characterization and properties of sulfate-modified silver carbonate with enhanced visible light photocatalytic performance, RSC Adv., 2023, 13, 23076- 23086. https://doi.org/10.1039/d3ra03120a.

W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Lia , L. Zhang, B. Dai, J. Xu, F. Zhu, N. Shenge, D.Y.C. Leung. A novel Z-scheme Ag3VO4 /BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Applied Catalysis B: Environmental,2019,245, 448-458. https://doi.org/10.1016/j.apcatb.2019.01.001.

L. Gao,Z. Li,J. Liu. Facile synthesis of Ag3VO4/b-AgVO3 nanowires with efficient visible-light photocat- alytic activity, RSC Adv., 2017, 7, 27515-27521. https://doi.org/10.1039/c7ra03955g.

W. Li, Qianlin Chen, X. Leia and Sh. Gong. Fabrication of Ag/AgBr/Ag3VO4 composites with high visible light photocatalytic performance, RSC Adv., 2019, 9, 5100-5109. https://doi.org/10.1039/c8ra10538c.

Y. Hara, T. Takashima, R. Kobayashi, S. Abeyrathna, B. Ohtani, H. Irie. Silver-Inserted Heterojunction Photocatalyst Consisting of Zinc Rhodium Oxide and Silver Antimony Oxide for Overall Pure-Water Splitting under Visible Light, Applied Catalysis B: Environmental, 209, 663–668. https://10.1016/j.apcatb. 2017.03.040.

M.J.Islam, A.Kumer. First-principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78Se0.22O3 photocatalyst. SN Appl. Sci. 2, 251 (2020). https://doi.org/10.1007/s42452-020-205 8-z.

Z. Lou,B. Huang,Z. Wang,X. Ma,R. Zhang,X. Zhang,X. Qin,Y. Dai,M.-H.Whangbo. Ag6Si2O7:a Silicate Photocatalyst for the Visible Region. Chemistry of Materials,2014, 26(13), 3873–3875. https://10.1021/ cm500657n.

Z. Yi, J.Ye, N.Kikugawa, T. Kako, Sh. Ouyang, H. Stuart-Williams,H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Mater,2010, 9(7), 559–564. https://doi.org/10.1038/nmat2780.

P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni. Quantum ESPRESSO toward the exascale,J. Chem. Phys,2020, 152, 15, 154105. https://doi.org/10.1063/5.0005082.

M.J. van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann,X. Gonze, G.-M. Rignanese. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Computer Physics Communications,2018, 226, https://doi.org/10.1016/j.cpc.2018.01.012.

Perdew, J. P., Burke, K., Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996,77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

J. P. Perdew, K. Burke, and M. Ernzerhof,Generalized Gradient Approximation Made Sim- ple,Phys.Rev.,Lett.77,3865. https://doi.org/10.1103/PhysRevLett.77.3865.

Leopold Talirz, Snehal Kumbhar, Elsa Passaro, Aliaksandr V. Yakutovich, Valeria Granata, Fernando Gargiulo, Marco Borelli, Martin Uhrin, Sebastiaan P. Huber, Spyros Zoupanos, Carl S. Adorf, Casper Welzel Andersen, Ole Schütt, Carlo A. Pignedoli, Daniele Passerone, Joost VandeVondele, Thomas C. Schulthess, Berend Smit, Giovanni Pizzi Nicola Marzari.Materials Cloud, a platform for open computa- tional science. Sci Data,2020, 7, 299. https://doi.org/10.1038/s41597-020-00637-5.

J.Bardeen, W. Shockley. Deformation potentials and mobilities in non-polar crystals, Phys. Rev.,1950,80,72. https://doi.org/10.1103/PhysRev.80.72.

R.W.G. Wyckoff. Crystal structure of silver phosphate and silver arsenate (ag3 x o4). American Journal of Science, 1925, Serie 5(1,1921-1938), 10, 107–118.

A. Durif, I.Tordjmax,R. Masse (1976). Affinement de la structure cristalline du monophosphate d’argent Ag3PO4. Existence d’une forme haute témperature. Zeitschrift Für Kristallographie - Crystalline Materials, 1976,144,1-6. https://10.1524/zkri.1976.144.16.76.

T.Katsura, Y. Tange. A Simple Derivation of the Birch–Murnaghan Equations of State (EOSs) and Comparison with EOSs Derived from Other Definitions of Finite Strain, Minerals, 2019, 9(12), 745. https://doi.org/10.3390/min9120745.

Y. Lu, Sh. Zhu, E.Huang,Y.He,H. Yan. Pressure-driven band gap engineering in ion-conducting semicon- ductor silver orthophosphate, J. Mater. Chem. A, 2019, 7,4451-4458, https://doi.org/10.1039/C8TA106 06A.

N.Umezawa,O. Shuxin,J. Ye. Theoretical study of high photocatalytic performance of Ag3PO4, Physical Review B, 2011, 83(3), 035202. https://doi.org/10.1103/PhysRevB.83.035202.

F. Lipsky,L. H.S. Lacerda, S. R. Lazaro, E.Longo, J.Andrés and M. A. San-Miguel. Unraveling the relationship between exposed surfaces and the photocatalytic activity of Ag3PO4: an in-depth theoretical investigation, RSC Adv., 2020, 10, 30640-30649. https://doi.org/10.1039/d0ra06045c.

R. Sinha,D. Friedrich, G. Zafeiropoulos, E. Zoethout, M. Parente, M. C M van de Sanden, A. Bieberle- Hütter. Charge carrier dynamics and photocatalytic activity of 111 and 100 faceted Ag3PO4 particles, J. Chem. Phys. 2020, 152, 244710. https://doi.org/10.1063/5.0006865.

Timoshevskii, S. Kotrechko, and Yu. Matviychuk. Atomic structure and mechanical properties of carbyne, 2015, Physical Review B 91(24). https://doi.org/10.1103/PhysRevB.91.245434.

Y.Xu , M.M.M.Schoonen.The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000,85, 543-556. https://doi.org/10.2138/am-2000-0 416.

H. Dong,J. Sun,G. Chen,Ch. Li,Y. Hua and Ch. Lv, An advanced Ag-based photocatalyst Ag2Ta4O11 with outstanding activity, durability and universality for removing organic dyes, Phys. Chem. Chem. Phys., 2014, 16, 23915-23921, https://doi.org/10.1039/C4CP03494E.

X. Ma, B. Lu, D. Li, R. Shi, Ch. Pan, and Y.Zhu. Origin of Photocatalytic Activation of Silver Orthophos- phate from First-Principles, J. Phys. Chem. C 2011, 115, 4680–4687. https://doi.org/10.1021/jp111167u.

Просмотров: 70

Как цитировать

Электронные и транспортные свойства Ag₃PO₄ как основа для каталитических применений. (2025). Узбекский журнал современной физики, 2(2), 38-49. https://ujmph.uz/index.php/journal/article/view/44

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.


ISSN 3093-8686 (Online)